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The creep deformation characteristics of N i -22 at % Cu solid solution alloy have been 
investigated in the temperature range of 595 to 1015 K (0.36 to 0.64 Tm ) and under 
constant stress condition of 10 to 392 MPa. Using the effective diffusivity, D~f = fLDL + 
fpDe, the dependence of steady-state creep rate, es, on the stress has been analysed and 
found to be explained with the equation 

where • is a numerical constant, E is the Young's modulus, b is Burger's vector, O L and 
De are the diffusivities of lattice and pipe diffusion, respectively. From this equation it is 
predicted that at the high temperature and low stress, the contribution for the creep 
deformation of lattice diffusion becomes predominant to give the stress exponent value 
of 3. On the other hand at lower temperature and higher stress, pipe diffusion has a 
strong influence on the deformation to make the exponent value 4.5. The measured creep 
deformation activation energy is found to be dependent on the temperature and stress 
applied. At high temperature (above 0.7 Tin) the activation energy for the deformation 
approaches to the value of lattice diffusion and at low temperature (below 0.4 Tm) the 
creep deformation energy becomes similar to that for the pipe diffusion. Under the same 
temperature condition the activation energy is observed to be decreasing with the applied 
stress. 

1. Introduction 
Since for most crystalline materials the values of  
the activation energies and the activation volumes 
of high temperature creep deformation are iden- 
tical with those of self diffusion, there has been 
encouragement to develop the tenable theories of  
creep deformation in terms of the lattice self dif- 
fusion. However, for low temperature creep 

deformation, many suspected phenomena were 
supposed to explain the reported low activation 
energies for creep, i.e. 40 to 80% of the lattice self 
diffusion values. 

Because there is no significant difference in 
creep behaviour between high (~0 .6  to about 
0.7Tin) temperatures many attempts have been 
made to predict the creep behaviour at the inter- 
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mediate temperatures using the data obtained at 
the high temperatures. Namely, the effective 
diffusivity concept [1] was introduced based on 
the assumption that the creep deformation at both 
high and intermediate temperatures is controlled 
by the same mechanism, diffusion, but only the 
diffusion path changes from a lattice to a disloca- 
tion core. 

After Barret et aL [2] reported that the creep 
deformation of copper is controlled by pipe diffu- 
sion in the temperature range of 0.4 to 0.64 Tin, 
Robinson and Sherby, in 1969, had some success 
in explaining lower creep activation energy at the 
intermediate temperature than that of self diffu- 
sion by simply introducing the effective diffusivity 
term into the existing theory. However, in their 
adapted effective diffusivity concept, they 
assumed that the dislocation density remained 
constant with stress. 

In 1975, after Weertman [4] announced at a 
symposium held in the memory of J. E. Dorn, the 
fact that all the existing theories predict a third 
power stress dependence of the creep rate in the 
absence of ad hoc assumptions and do not agree 
well with experimental results of pure metals, an 
attempt to explain larger stress exponent values by 
incorporating the effect of pipe diffusion was 
made by Evans et al. [5 ]. These investigators insist 
that their model provides good agreement with the 
experimental observation for a number of com- 
mon materials. Their theoretical equation has 
the same form as Nabarro's creep equation [6] 
obtained using the idea of "short circuit diffusion". 
Recently, considering motion of dislocation, 
curvature of dislocation and local force, Spingarn 
et aL [7] also derived an equation for creep similar 
to that of Evans and Knowles [8]. Such models 
contain the experimental fact that the stress expo- 
nent must be larger by a factor of two when the 
pipe diffusion process predominates over the 
lattice diffusion. 

For Cu-Ni alloys, Brebec et al. [9] confirmed 
that the activation energy for creep was different 
from that for self diffusion. This experimental 
evidence shows that the creep deformation 
mechanism of Cu-Ni alloys may not be controlled 
by the lattice self diffusion process only. The pur- 
pose of this study is to investigate the creep behav- 
iour of the Ni-Cu alloy at high and intermediate 
temperatures for the further interpretation of the 
role of "short circuit diffusion" on the creep de- 
formation mechanism. 

2. Experimental procedure 
The alloy was prepared by melting electrolytic 
nickel and copper of purity not lower than 99.9%. 
The slabs were homogenized for 12h at 1173K 
and cold-rolled into sheets of 1 mm thickness. Ten- 
sile specimens with a gauge length of 25 mm and a 
width of 4 mm were machined and subsequently 
annealed at 1073 K for 2 h in vacuum to give an 
average grain size of about 0.025ram. The 
chemical composition of the alloy is Cu: 21.5 at %, 
Ni: 78.2at%, Mn: 0.189at%, Fe: 0.027at %, Pb: 
0.002 at %, Co: 0.144 at %. 

The creep tests were conducted using a creep 
machine equipped with an Andrade-Chalmers 
constant stress ann. All creep tests were conduc- 
ted in air. The extension of the specimen was 
measured by a Schaevitz model HR1000 LVDT 
with an accuracy of 0.5 x 10-6m. The steady- 
state creep rate was measured from the slope of 
the secondary or steady-state region. The test tem- 
perature ranged from 595 K (0.36 Tin) to 1050 K 
(0,64 Tin) and the stress levels ranged from 10 to 
392 MPa. 

3. Experimental results and discussion 
3.1. Creep curves and transient creep 

behaviour 
All the creep curves obtained from low to high 
stress tests (Fig. i)  show the typical form of that 
for the class II type alloys. In Fig. 2, the schematic 
drawing of the stress change tests is illustrated. 
Regardless of the value of stress and temperature 
conducted, the transient behaviour of the alloy 
was similar in that normal primary creep was 
observed with increasing stress. Specimens were 
also unloaded after they had undergone creep at a 
certain strain in the steady-state and left for 3 h at 
the test temperature to see of there is any possi- 
bility of the formation of an atmosphere around 
the dislocations. On reloading the specimen to the 
original stress level, a normal transient primary 
creep deformation was observed again in both 
regions of the different stress exponent, i.e. n = 3 
for low stress and high temperature and n = 4.5 
for high stress and low temperature conditions (see 
Fig. 3; this will be discussed later). 

Considering the above mentioned experimental 
results, one may think that the dislocation glide 
process may not be the controlling mechanism but 
that the diffusion assisted dislocation climb 
process may be the possible controlling mechan- 
ism but that the diffusion assisted dislocation 
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Figure 1 Typical creep curves of 78Ni-22Cu alloy. 
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climb process may be the possible controlling 
mechanism for deformation. On the basis of this 
thought, the diffusion assisted process will be con- 
sidered throughout this paper. 

3.2.  D i f f u s i v i t y  and d e v e l o p m e n t  o f  c reep  
rate e q u a t i o n  

The effective diffusivity concept was suggested by 
Hart [1] originally to explain anomalies in low 
temperature diffusion experiments. He expressed 

the virtual effective diffusivity as follows: 

Des = fLDL + fpDp (1) 

where fL, DL and fp, Dp are the atomic fraction 
and diffusivity related to the lattice and pipe diffu- 
sion, respectively. The fraction fp is assumed [10] 
to be equal to (n/N)p, where n is the number of  
atoms in a dislocation core of atomic length, N is 
the number of atoms per unit area and p is the 
dislocation density. 

+z~d, / 6"2 

-z~62 

6~ • 

Time 
Figure 2 Schematic drawing of the transient 
creep behaviour upon small stress change. 
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Figure 3 Steady-state creep rate of 78Ni-22Cu alloy as 
function of modulus corrected stress. 

For Ni-Cu alloys, the steady-state dislocation 
density is experimentally observed to be a func- 
t ion of  the applied stress as [11, 12] 

p = po (~ /~ ) " .  (2) 

Jones and SeUars [ l l ]  reported n '=  1.7 for N i -  
10Cu alloy and, Hong and Nam [12] experi- 
mentally measured n'  to be 1.44 for Ni-30Cu 
alloy in the same stress and temperature conditions 
as conducted in this investigation. On the basis of  
the above mentioned reports,  if  we assume that n'  
for this work is about 1.5, the effective diffusivity 
in Equation 1 may be expressed as, 

D e f f =  fLDL +/3(o/E)a'SDe (3) 

where fL is known to be about unity and /3 is a 
numerical constant which is expressed as (n/N)po. 
To get the value of  Def~ as a function of  tempera- 
ture and stress one has to know those values of  
DL and D e for various temperatures.  For  a binary 
solid solution, the appropriate diffusion coefficient 
for climb-controlled creep is shown by Chin et al. 
[13] as 

D1D2 
Dc] - D~X2 + D~X1 (4) 

where D* and X are the radioactive tracer diffusion 
coefficient and mole fraction, respectively. To solve 
Equation 4, the radioactive diffusivities o f  Ni 63 
and Cu 64, are used. These values were obtained 

experimentally by  Monma et al. [14] for C u - N i  
alloys at the temperature range of  0.78 to about 
0.9 T m. For  this work these high temperature 
values are extrapolated to the test temperatures.  
Since this diffusion coefficient for climb may be 

considered for the latt ice diffusion coefficient we 
replace Del for DL, and the calculated values of  
Dcl for various temperatures are shown in Table I. 

In order to calculate the value of  pipe diffusivity 
of  the alloy, it is necessary to know the detailed 
analysis of  the pipe diffusion mechanism contri- 
buting to dislocation climb, namely,  the diffusion 
of  solute and solvent atoms along the dislocation 
core and the interaction of  solute atoms with 
vacancies. However, no detailed mechanism for 
this has ye t  been developed. Therefore, we have 
used the results obtained by Kaganovsky and 
Wang-hal [15]. The diffusivity data were obtained 
from the surface diffusion of  N i - C u  solid solution 
alloys and are also shown in Table I. 

As previously mentioned in Section 1, Weertman 
[4] proposed the following equation for the climb 
controlled creep a t  high temperatures 

Eb  
= a :-~DL(o/E) a. (5) 

K 1  

T A B L E I Calculated diffusion data (p = 3 • 101~ 

Temperature Tracer diffusivity 

(K) D~4i D~ u 

Climb Pipe Effective 
diffusivity diffusivity diffusivity 
Dcl Dp Def  t 

(p = const) 

598 8.83 • 10 -24 1.63 X 10 -22 
661 1.94 • 10 -21 2.09 X 10 -20 
744 5.83 X 10 -19 3.55 X 10 -la 
826 5.31 X 10 -17 2.06 X 10 -16 
909 2.23 X 10 -xs 5.98 X 10 -Is 
992 5.02 X 10 -14 9.85 X 10 -14 

1050 3.30 X 10 -13 5.37 X 10 -13 

1.12 • 10 -23 3.63 X i0 -x7 5.38 • 10 -21 
2.42 • 10 -2x 1.34 • 10 -xs 2.00 • 10 -x9 
7.14 X 10 -19 6.11 • 10 -14 9.75 X 10 -~s 
6.35 X 10 -17 1.25 X 10 -12 2.49 X 10 -16 
2.59 X 10 -Is 1.53 X 10 -11 4.85 X 10 -Is 
5.63 X 10 -14 1.23 X 10 -1~ 7.45 X 10 -14 

3.61 X 10 -13 4.33 X 10 -1~ 4.25 X 10 -13 
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As this lattice diffusion controlled high tempera- 
ture creep model predicts a third power stress 
dependence of the creep rate and cannot account 
for the creep behaviour of the intermediate tem- 
perature range (< 0.6 Tin), Equation 3 will be sub- 
stituted into the Equation 5 to give 

Eb 
= oe k ~  [DI, + [3(o/E)l"SDi, l ( a lE)  3 (6) 

This is similar to the result of  Spingarn et al. [7] 
but Equation 6 implies that n = 4.5 when pipe dif- 
fusion controls creep and n = 3 if lattice diffusion 
predominates the creep formation. 

3 . 3 .  S t ress  d e p e n d e n c e  o f  c r e e p  r a t e  
In Fig. 3, the steady-state creep rates obtained 
under the various temperature and stress combi- 
nation are plotted against the normalized stress 
with Young's modulus. The temperature depen- 
dence of Young's modulus for Ni-Cu alloys is 
reported by Orlov and Fedotov [16], Parlor 
et al. [17] and Iguchi and Udagawa [18]. These 
papers give common results such as Young's 
modulus decreases almost linearly with increasing 
temperature. The Young's modulus obtained from 
the above results are used for the normalization 
of the stress for this work. As shown in Fig. 3, in 
the power law region, the stress exponent increases 
with increasing stress and decreasing temperature. 

The increase in the stress exponent in the 
power law range is predicted from Equation 6 and 
the value is readily obtained from the expression, 

8 in ~ _ l '5(3(a[E)l"SDv 3. (7) 
n 

a In (a lE)  D L + f l(a/E)l"SDp + 

Equation 7 shows that the value of n will be 3 
when the stress is small and as the stress increases 
the first term on the right hand side of Equation 7 
will become larger to give the maximum value of 
n as equal to 4.5. 

The creep rates in Fig. 3 were normalized with 
the effective diffusivity in which the dislocation 
density is assumed to be constant. From a best fit 
method for superposition of all the data in Fig. 3, 
dislocation density in the effective diffusivity was 
calculated to be 3 • 1014 m -2, a value which is in 
good agreement with the experimental result of 
Hong and Nam [12]. In Fig. 4, these normalized 
creep rates are plot ted against the normalized 
stress with Young's modulus. Interestingly enough, 
this master plot shows that the exponent gradually 
increases from 3 to 4.5 as the stress increases. 
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Figure 4 Steady-state creep rate over effective diffusivity 
predicted by assuming that the dislocation density 
remains constant against stress over Young's modulus for 
78Ni-22Cu alloy. 

There could be two different ways to interpret 
the change in the stress exponent. One possibility 
originates from the increasing influence of pipe 
diffusivity as the dislocation density increases with 
increasing stress and decreasing temperature. The 
other is the change of the deformation mechanism 
from dislocation glide due to the formation of the 
atmosphere under low stress to dislocation climb 
with increasing stress. However, as previously men- 
tioned, the latter is excluded on the basis of the 
results of  the stress change test and intermittent 
stress test. Therefore, the contribution of the pipe 
diffusion process will be considered. 

In Equation 6, it is shown that the stress 
exponent will always be 3 if the proper value of 
the dislocation density at a certain stress is used. 
In other words, when the steady-state creep rates 
are normalized with the effective diffusivity term 
in Equation 6, one obtains 
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DL + fl(a/E)l"SDp Dei, e [p = p(a)] 

(8) = C~k~- 

This equation implies that if the steady-state creep 
rates are normalized with the effective diffusivities, 
in which the dislocation density is not a constant 
but a function of the stress, and plotted against 
the applied stress normalized with the temperature- 
compensated Young's modulus, then the stress 
exponent value of the master plot has to be 3 in 
the low power region. 

To see the feasibility of the Equation 8 one has 
to know the values of/3 = (n/N)po,p = po(u/E) l"s 
and a. Assuming the experimental result of Hong 
and Nam [12] for the dislocation density (men- 
tioned previously) of Ni-30 Cu is effective for this 
work, the stress dependence of the dislocation den- 
sity is expressed as p(m -2) = 2.88 x lOiS(alE) l"s. 
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Figure 5 Steady-state creep rate over effective diffusivity 
predicted by taking account of the stress dependence of 
the dislocation density against stress over Young's modulus 
for 78Ni-22Cu alloy. 
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For a good fit of the data to a single master curve 
in Fig. 5, the values a = 2 8  and /3=8.5 were 
obtained. From the values of Po = 2.88 x 10 is 
and /3 = 8.5, one calculates n = 60 (N = 2.03 x 
1019 m -2 for Ni -22  at % Cu). This value is rather 
higher than the number of 10 for n chosen by 
Shewmon [10]. But his study was for the case of 
static diffusion. As mentioned by Robinson and 
Sherby [3], there is a possibility that for the case 
of moving dislocations n may be higher than 10. 
These authors calculated n = 40 to about 400 for 
a reasonable value of dislocation density. It can 
be said that the rather high value of n in this study 
may be due to the effect of dynamic dislocation 
behaviour. Also, the value of 28 for o~ agrees with 
the result of Spingarn et al. [7]. From the above 
results, it is suggested that Equation 8 is valid for 
the steady-state creep deformation. 

The result shown in Fig. 5 supports the fact 
that, in the absence of ad hoc assumptions, all the 
existing theories based on lattice diffusion predict 
a third power law stress dependence which was 
brought to public notice by Weertman [4] and 
reconfirmed by Poirier [19]. The result also 
suggested that the creep deformation mechanism 
of this alloy is explained in terms of the localized 
climb of edge dislocations, which can occur by 
lattice or core diffusion. 

3.4. Temperature and stress dependence of 
activation energy 

The activation energies for steady-state creep were 
calculated from the plot of the In ~ against ( l /T)  
at constant o/E. Using Equation 6, one can write 
the following equation, 

Rd In e_" I _ Rd In Def~ 
Qe~f - d(1/T) Io/E d(1/T) (9) 

where Qefr is the effective activation energy, The 
activation energies for a climb-controlled process 
were found by using the formula, 

where De~ is a constant and Qcl is the activation 
energy for climb-controlled creep. From Equations 
4 and 10, D~ and Qcl values were found to be 
0.003 m 2 sec -1 and 280 kJ mo1-1, respectively. 

Substituting Equation 10 into Equation 3, dif- 
ferentiating with respect to (1/T), and letting T = 
T(Tm ~Tin) leads to the following equation, 



Qeff = 

D~ exp 

De~ exp 

] 

aP 
Qel ] +  8.5DgQp exp [-RTm-(-f/Tm)J [(o/E) 1"s ] Rrm(r/rm)l 

QP 
Qel .]+ 8.5DO exp [. RTra_~[Tm)I[(a/E),.s ] --RTm(T/Tm) 

(ix) 

In Fig. 6, the dark lines indicate the variation of 
the activation energy predicted from Equation 11 
as a function of the homologous temperature at 
different magnitudes of alE. Below 0.4 Tin, Qe~e 
is about equal to the activation energy for pipe dif- 
fusion and above 0.7Tin, Qe~f is about equal to the 
activation energy for lattice diffusion. In the tem- 
perature range of 0.4 to about 0.7Tin, Qeff is seen 
to be dependent on o/E. As ale is increased, i.e. 
dislocation density is increased, the pipe diffusion 
term becomes predominant at a given homo- 
logous temperature and Qeff decreases towards the 
activation energy for pipe diffusion. The exper- 
imentally determined activation energies for 
steady-state creep are also given in the same figure. 
As can be seen the prediction of Equation 11 
agrees well with the experimental data. 

A plot of Qeff against alE at a given homo- 
logous temperature can be calculated from 
Equation 11 and the results of such calculations 
are shown in Fig. 7. At low stresses, the pipe dif- 
fusion term becomes negligible with increasing 
temperature and Qeff becomes the activation 
energy for lattice diffusion. Even at low stresses, 
the pipe diffusion term is important in the low 
temperature range. At high stresses, the pipe dif- 
fusion term becomes dominant and Qeff should 
be equal to the activation energy for pipe diffusion. 
The comparison of experimentally measured 

activation energy with that predicted from 
Equation 11 shows a tendency that the activation 
energy for steady state-creep is decreasing towards 
the activation energy for pipe diffusion with the 
combined effect of increasing stress and decreasing 
temperature. 

Fig. 7 indicates that the activation energy 
depends on the stress term at a given temperature. 
This means that the activation energy for steady- 
state creep can not be expressed as a function of 
temperature only. Some workers [20] reported 
that the activation energies were independent on 
the stress term under certain experimental con- 
ditions. This could be true only for a narrow stress 
range in which one type of diffusion is predomi- 
nant. On the other hand, many investigators 
reported that the apparent activation energy is 
dependent on the applied stress by introducing 
the concept of internal stress. As states above, it is 
suggested that the influence of applied stress on 
the activation energy should be explained by the 
concept of effective diffusivity in a diffusion- 
controlled flow. The good correlation with the 
experimental data and the curves predicted from 
equation 11 shows the validity of an effective 
diffusivity for creep. 

4 .  C o n c l u s i o n s  
1. The behaviour of a transient creep test shows 
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Figure 6 Comparison of the 
measured activation energy with 
the calculated of 78Ni-22Cu 
alloy at various o/E as a function 
of homologous temperature. 
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no indication of the solute atmosphere formation 
around dislocations in N i - 2 2 a t  % Cu alloy. This 
implies a dislocation dragging process may not be 

occurring in the creep deformation process under 

the test conditions used. 
2. Using the concept of effective diffusivity, 

the value of the stress exponent in the low power 
range is observed to be 3 if the lattice diffusion 
assisted dislocation climb controls the creep defor- 

mat ion process while the value of the exponent 

becomes 4.5 if diffusion assisted localized dis- 
location climb controls the time-dependent plastic 

deformation mechanism. 
3. The measured and the calculated activation 

energies, on the basis of effective diffusivity, were 

almost identical and show stress and temperature 
dependence. As stress increases and temperature 

decreases the activation energy decreases from the 

lattice diffusion value to that of the pipe diffusion 
process. 

4. The creep deformation controlling mech- 

anism of the alloy is a diffusion controlled process 
in which the climb of edge dislocations can occur 
either through lattice diffusion or dislocation pipe 
diffusion. 
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